Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Brain Behav Immun ; 119: 494-506, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657842

RESUMO

Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.

2.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607916

RESUMO

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , L-Lactato Desidrogenase , Ácido Láctico , Humanos , Células Secretoras de Insulina/metabolismo , Animais , L-Lactato Desidrogenase/metabolismo , Camundongos , Ácido Láctico/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Ciclo do Ácido Cítrico , Camundongos Endogâmicos C57BL , Masculino
4.
Cell Mol Gastroenterol Hepatol ; 17(1): 29-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37703945

RESUMO

BACKGROUND & AIMS: Observational studies have linked lipid-lowering drug targets pro-protein convertase subtilisin/kexin 9 (PCSK9) and HMG-CoA reductase (HMGCR) with adverse liver outcomes; however, liver disease incidence varies across diverse populations, and the long-term hepatic impact of these lipid-lowering drugs among non-white Europeans remains largely unknown. METHODS: We use single nucleotide polymorphisms (SNPs) in PCSK9 and HMGCR loci from genome-wide association study data of low-density lipoprotein cholesterol in 4 populations (East Asian [EAS], South Asian [SAS], African [AFR], and European [EUR]) to perform drug-target Mendelian randomization investigating relationships between PCSK9 and HMGCR inhibition and alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and bilirubin. RESULTS: Analyses of PCSK9 instruments, including functional variants R46L and E670G, failed to find evidence for relationships of low-density lipoprotein cholesterol lowering via PCSK9 variants and adverse effects on ALT, AST, GGT, or ALP among the cohorts. PCSK9 inhibition was associated with increased direct bilirubin levels in EUR (ß = 0.089; P value = 5.69 × 10-6) and, nominally, in AFR (ß = 0.181; P value = .044). HMGCR inhibition was associated with reduced AST in SAS (ß = -0.705; P value = .005) and, nominally, reduced AST in EAS (ß = -0.096; P value = .03), reduced ALP in EUR (ß = -2.078; P value = .014), and increased direct bilirubin in EUR (ß = 0.071; P value = .032). Sensitivity analyses using genetic instruments derived from circulating PCSK9 protein levels, tissue-specific PCSK9 expression, and HMGCR expression were in alignment, strengthening causal inference. CONCLUSIONS: We did not find ALT, AST, GGT, or ALP associated with genetically proxied PCSK9 and HMGCR inhibition across ancestries. We identified possible relationships in several ancestries between PCSK9 and increased direct and total bilirubin and between HMGCR and reduced AST. These findings support long-term safety profiles and low hepatotoxic risk of PCSK9 and HMGCR inhibition in diverse populations.


Assuntos
Pró-Proteína Convertase 9 , Subtilisina , Humanos , Pró-Proteína Convertase 9/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fígado , Bilirrubina , Lipoproteínas LDL , Colesterol , Lipídeos , Hidroximetilglutaril-CoA Redutases/genética
5.
Nat Aging ; 3(8): 1020-1035, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550455

RESUMO

The concept of aging is complex, including many related phenotypes such as healthspan, lifespan, extreme longevity, frailty and epigenetic aging, suggesting shared biological underpinnings; however, aging-related endpoints have been primarily assessed individually. Using data from these traits and multivariate genome-wide association study methods, we modeled their underlying genetic factor ('mvAge'). mvAge (effective n = ~1.9 million participants of European ancestry) identified 52 independent variants in 38 genomic loci. Twenty variants were novel (not reported in input genome-wide association studies). Transcriptomic imputation identified age-relevant genes, including VEGFA and PHB1. Drug-target Mendelian randomization with metformin target genes showed a beneficial impact on mvAge (P value = 8.41 × 10-5). Similarly, genetically proxied thiazolidinediones (P value = 3.50 × 10-10), proprotein convertase subtilisin/kexin 9 inhibition (P value = 1.62 × 10-6), angiopoietin-like protein 4, beta blockers and calcium channel blockers also had beneficial Mendelian randomization estimates. Extending the drug-target Mendelian randomization framework to 3,947 protein-coding genes prioritized 122 targets. Together, these findings will inform future studies aimed at improving healthy aging.


Assuntos
Estudo de Associação Genômica Ampla , Envelhecimento Saudável , Fenótipo , Longevidade
6.
Neurosci Biobehav Rev ; 149: 105155, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019248

RESUMO

The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.


Assuntos
Lipoproteínas LDL , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Lipoproteínas LDL/metabolismo , Encéfalo/metabolismo , Subtilisinas/metabolismo
7.
Nat Commun ; 14(1): 2236, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076473

RESUMO

Biological aging is accompanied by increasing morbidity, mortality, and healthcare costs; however, its molecular mechanisms are poorly understood. Here, we use multi-omic methods to integrate genomic, transcriptomic, and metabolomic data and identify biological associations with four measures of epigenetic age acceleration and a human longevity phenotype comprising healthspan, lifespan, and exceptional longevity (multivariate longevity). Using transcriptomic imputation, fine-mapping, and conditional analysis, we identify 22 high confidence associations with epigenetic age acceleration and seven with multivariate longevity. FLOT1, KPNA4, and TMX2 are novel, high confidence genes associated with epigenetic age acceleration. In parallel, cis-instrument Mendelian randomization of the druggable genome associates TPMT and NHLRC1 with epigenetic aging, supporting transcriptomic imputation findings. Metabolomics Mendelian randomization identifies a negative effect of non-high-density lipoprotein cholesterol and associated lipoproteins on multivariate longevity, but not epigenetic age acceleration. Finally, cell-type enrichment analysis implicates immune cells and precursors in epigenetic age acceleration and, more modestly, multivariate longevity. Follow-up Mendelian randomization of immune cell traits suggests lymphocyte subpopulations and lymphocytic surface molecules affect multivariate longevity and epigenetic age acceleration. Our results highlight druggable targets and biological pathways involved in aging and facilitate multi-omic comparisons of epigenetic clocks and human longevity.


Assuntos
Longevidade , Multiômica , Humanos , Longevidade/genética , Epigênese Genética , Envelhecimento/genética , Fenótipo , Lipoproteínas/genética , Metilação de DNA/genética , Ubiquitina-Proteína Ligases/genética , alfa Carioferinas/genética
8.
Biol Psychiatry ; 93(4): 331-341, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182531

RESUMO

BACKGROUND: Stress contributes to premature aging and susceptibility to alcohol use disorder (AUD), and AUD itself is a factor in premature aging; however, the interrelationships of stress, AUD, and premature aging are poorly understood. METHODS: We constructed a composite score of stress from 13 stress-related outcomes in a discovery cohort of 317 individuals with AUD and control subjects. We then developed a novel methylation score of stress (MS stress) as a proxy of composite score of stress comprising 211 CpGs selected using a penalized regression model. The effects of MS stress on health outcomes and epigenetic aging were assessed in a sample of 615 patients with AUD and control subjects using epigenetic clocks and DNA methylation-based telomere length. Statistical analysis with an additive model using MS stress and a MS for alcohol consumption (MS alcohol) was conducted. Results were replicated in 2 independent cohorts (Generation Scotland, N = 7028 and the Grady Trauma Project, N = 795). RESULTS: Composite score of stress and MS stress were strongly associated with heavy alcohol consumption, trauma experience, epigenetic age acceleration (EAA), and shortened DNA methylation-based telomere length in AUD. Together, MS stress and MS alcohol additively showed strong stepwise increases in EAA. Replication analyses showed robust association between MS stress and EAA in the Generation Scotland and Grady Trauma Project cohorts. CONCLUSIONS: A methylation-derived score tracking stress exposure is associated with various stress-related phenotypes and EAA. Stress and alcohol have additive effects on aging, offering new insights into the pathophysiology of premature aging in AUD and, potentially, other aspects of gene dysregulation in this disorder.


Assuntos
Senilidade Prematura , Alcoolismo , Humanos , Alcoolismo/genética , Senilidade Prematura/genética , Consumo de Bebidas Alcoólicas/genética , Metilação de DNA , Epigênese Genética
9.
J Am Heart Assoc ; 11(21): e026122, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36285785

RESUMO

Background PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors are important therapeutic options for reducing cardiovascular disease risk; however, questions remain regarding potential differences in the neuropsychiatric impact of long-term PCSK9 inhibition between men and women. Methods and Results Using PCSK9 gene single-nucleotide polymorphisms from European ancestry-based genome-wide association studies of low-density lipoprotein cholesterol (N=1 320 016), circulating PCSK9 protein levels (N=10 186), tissue-specific PCSK9 gene expression, sex-specific genome-wide association studies of anxiety, depression, cognition, insomnia, and dementia (ranging from 54 321 to 194 174), we used drug-target inverse variance-weighted Mendelian randomization (MR) and complementary MR methods (MR Egger, weighted median, and weighted mode) to investigate potential neuropsychiatric consequences of genetically proxied PCSK9 inhibition in men and women. We failed to find evidence surpassing correction for multiple comparisons of relationships between genetically proxied PCSK9 inhibition and the risk for the 12 neuropsychiatric end points in either men or women. Drug-target analyses were generally well-powered to detect effect estimates at several hypothesized thresholds for both combined-sex and sex-specific end points, especially analyses using PCSK9 instruments derived from protein and expression quantitative trait loci. Further, MR estimates across complementary MR methods and additional models using genetic instruments derived from circulating PCSK9 protein levels and tissue-specific PCSK9 expression were in alignment, strengthening causal inference. Conclusions Genetically proxied PCSK9 inhibition showed a neutral neuropsychiatric side effect profile with no major sex-specific differences. Given statistical power considerations, replication with larger samples, as well as data from other ancestral populations, are necessary. These findings may have important clinical implications for lipid-lowering drug-prescribing practices and side effect monitoring of approved and future PCSK9 therapies.


Assuntos
Transtornos Cognitivos , Demência , Transtornos do Humor , Pró-Proteína Convertase 9 , Feminino , Humanos , Masculino , Cognição , Transtornos Cognitivos/genética , Demência/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtornos do Humor/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
10.
J Am Coll Cardiol ; 80(7): 653-662, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35953131

RESUMO

BACKGROUND: Lipid-lowering therapy with statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition are effective strategies in reducing cardiovascular disease risk; however, concerns remain about potential long-term adverse neurocognitive effects. OBJECTIVES: This genetics-based study aimed to evaluate the relationships of long-term PCSK9 inhibition and statin use on neurocognitive outcomes. METHODS: We extracted single-nucleotide polymorphisms in 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and PCSK9 from predominantly European ancestry-based genome-wide association studies summary-level statistics of low-density lipoprotein cholesterol and performed drug-target Mendelian randomization, proxying the potential neurocognitive impact of drug-based PCSK9 and HMGCR inhibition using a range of outcomes to capture the complex facets of cognition and dementia. RESULTS: Using data from a combined sample of ∼740,000 participants, we observed a neutral cognitive profile related to genetic PCSK9 inhibition, with no significant effects on cognitive performance, memory performance, or cortical surface area. Conversely, we observed several adverse associations for HMGCR inhibition with lowered cognitive performance (beta: -0.082; 95% CI: -0.16 to -0.0080; P = 0.03), reaction time (beta = 0.00064; 95% CI: 0.00030-0.00098; P = 0.0002), and cortical surface area (beta = -0.18; 95% CI: -0.35 to -0.014; P = 0.03). Neither PCSK9 nor HMGCR inhibition impacted biomarkers of Alzheimer's disease progression or Lewy body dementia risk. Consistency of findings across Mendelian randomization methods accommodating different assumptions about genetic pleiotropy strengthens causal inference. CONCLUSIONS: Using a wide range of cognitive function and dementia endpoints, we failed to find genetic evidence of an adverse PCSK9-related impact, suggesting a neutral cognitive profile. In contrast, we observed adverse neurocognitive effects related to HMGCR inhibition, which may well be outweighed by the cardiovascular benefits of statin use, but nonetheless may warrant pharmacovigilance.


Assuntos
Doença de Alzheimer , Inibidores de Hidroximetilglutaril-CoA Redutases , Acil Coenzima A , Doença de Alzheimer/genética , Cognição , Estudo de Associação Genômica Ampla , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9/genética
11.
JAMA Psychiatry ; 79(9): 869-878, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947372

RESUMO

Importance: Past studies have identified associations between brain macrostructure and alcohol use behaviors. However, identifying directional associations between these phenotypes is difficult due to the limitations of observational studies. Objective: To use mendelian randomization (MR) to identify directional associations between brain structure and alcohol use and elucidate the transcriptomic and cellular underpinnings of identified associations. Design, Setting, and Participants: The main source data comprised summary statistics from population-based and case-control genome-wide association studies (GWAS) of neuroimaging, behavioral, and clinical phenotypes (N = 763 874). Using these data, bidirectional and multivariable MR was performed analyzing associations between brain macrostructure and alcohol use. Downstream transcriptome-wide association studies (TWAS) and cell-type enrichment analyses investigated the biology underlying identified associations. The study approach was data driven and did not test any a priori hypotheses. Data were analyzed August 2021 to May 2022. Main Outcomes and Measures: Brain structure phenotypes (global cortical thickness [GCT] and global cortical surface area [GCSA] in 33 709 individuals and left-right subcortical volumes in 19 629 individuals) and alcohol use behaviors (alcoholic drinks per week [DPW] in 537 349 individuals, binge drinking frequency in 143 685 individuals, and alcohol use disorder in 8845 individuals vs 20 657 control individuals [total of 29 502]). Results: The main bidirectional MR analyses were performed in samples totaling 763 874 individuals, among whom more than 94% were of European ancestry, 52% to 54% were female, and the mean cohort ages were 40 to 63 years. Negative associations were identified between genetically predicted GCT and binge drinking (ß, -2.52; 95% CI, -4.13 to -0.91) and DPW (ß, -0.88; 95% CI, -1.37 to -0.40) at a false discovery rate (FDR) of 0.05. These associations remained significant in multivariable MR models that accounted for neuropsychiatric phenotypes, substance use, trauma, and neurodegeneration. TWAS of GCT and alcohol use behaviors identified 5 genes at the 17q21.31 locus oppositely associated with GCT and binge drinking or DPW (FDR = 0.05). Cell-type enrichment analyses implicated glutamatergic cortical neurons in alcohol use behaviors. Conclusions and Relevance: The findings in this study show that the associations between GCT and alcohol use may reflect a predispositional influence of GCT and that 17q21.31 genes and glutamatergic cortical neurons may play a role in this association. While replication studies are needed, these findings should enhance the understanding of associations between brain structure and alcohol use.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Análise da Randomização Mendeliana , Consumo de Bebidas Alcoólicas/genética , Encéfalo/diagnóstico por imagem , Etanol , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único/genética
12.
Mol Psychiatry ; 27(9): 3875-3884, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35705636

RESUMO

Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging; however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of DNAmTL on alcohol consumption was performed (N = 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD. DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition (p = 4.0 × 10-12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and smoking status (0.06 kilobases shorter per year, p = 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R = 0.3, p = 2.2 × 10-5), highlighting the accuracy of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p = 3.75 × 10-8). The allele C of rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in hippocampus tissue (p = 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions negatively affected by alcohol and implicated in aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Alcoolismo , Encurtamento do Telômero , Humanos , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Telômero/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
13.
Commun Biol ; 4(1): 1230, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711921

RESUMO

Observational studies suggest smoking, cannabis use, alcohol consumption, and substance use disorders (SUDs) may impact risk for respiratory infections, including coronavirus 2019 (COVID-2019). However, causal inference is challenging due to comorbid substance use. Using summary-level European ancestry data (>1.7 million participants), we performed single-variable and multivariable Mendelian randomization (MR) to evaluate relationships between substance use behaviors, COVID-19 and other respiratory infections. Genetic liability for smoking demonstrated the strongest associations with COVID-19 infection risk, including the risk for very severe respiratory confirmed COVID-19 (odds ratio (OR) = 2.69, 95% CI, 1.42, 5.10, P-value = 0.002), and COVID-19 infections requiring hospitalization (OR = 3.49, 95% CI, 2.23, 5.44, P-value = 3.74 × 10-8); these associations generally remained robust in models accounting for other substance use and cardiometabolic risk factors. Smoking was also strongly associated with increased risk of other respiratory infections, including asthma-related pneumonia/sepsis (OR = 3.64, 95% CI, 2.16, 6.11, P-value = 1.07 × 10-6), chronic lower respiratory diseases (OR = 2.29, 95% CI, 1.80, 2.91, P-value = 1.69 × 10-11), and bacterial pneumonia (OR = 2.14, 95% CI, 1.42, 3.24, P-value = 2.84 × 10-4). We provide strong genetic evidence showing smoking increases the risk for COVID-19 and other respiratory infections even after accounting for other substance use behaviors and cardiometabolic diseases, which suggests that prevention programs aimed at reducing smoking may be important for the COVID-19 pandemic and have substantial public health benefits.


Assuntos
COVID-19 , Pandemias , Fumar , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana
14.
medRxiv ; 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33594380

RESUMO

Background: Observational studies suggest smoking, cannabis use, alcohol consumption, cannabis use, and substance use disorders (SUDs) may play a role in the susceptibility for respiratory infections and disease, including coronavirus 2019 (COVID-2019). However, causal inference is challenging due to comorbid substance use. Methods: Using genome-wide association study data of European ancestry (data from >1.7 million individuals), we performed single-variable and multivariable Mendelian randomization to evaluate relationships between smoking, cannabis use, alcohol consumption, SUDs, and respiratory infections. Results: Genetically predicted lifetime smoking was found to be associated with increased risk for hospitalized COVID-19 (odds ratio (OR)=4.039, 95% CI 2.335-6.985, P-value=5.93×10-7) and very severe hospitalized COVID-19 (OR=3.091, 95% CI, 1.883-5.092, P-value=8.40×10-6). Genetically predicted lifetime smoking was also associated with increased risk pneumoniae (OR=1.589, 95% CI, 1.214-2.078, P-value=7.33×10-4), lower respiratory infections (OR=2.303, 95% CI, 1.713-3.097, P-value=3.40×10-8), and several others. Genetically predicted cannabis use disorder (CUD) was associated with increased bronchitis risk (OR=1.078, 95% CI, 1.020-1.128, P-value=0.007). Conclusions: We provide strong genetic evidence showing smoking increases the risk for respiratory infections and diseases even after accounting for other substance use and abuse. Additionally, we provide find CUD may increase the risk for bronchitis, which taken together, may guide future research SUDs and respiratory outcomes.

15.
Mol Psychiatry ; 26(4): 1119-1132, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31649322

RESUMO

Observational studies suggest that lower educational attainment (EA) may be associated with risky alcohol use behaviors; however, these findings may be biased by confounding and reverse causality. We performed two-sample Mendelian randomization (MR) using summary statistics from recent genome-wide association studies (GWAS) with >780,000 participants to assess the causal effects of EA on alcohol use behaviors and alcohol dependence (AD). Fifty-three independent genome-wide significant SNPs previously associated with EA were tested for association with alcohol use behaviors. We show that while genetic instruments associated with increased EA are not associated with total amount of weekly drinks, they are associated with reduced frequency of binge drinking ≥6 drinks (ßIVW = -0.198, 95% CI, -0.297 to -0.099, PIVW = 9.14 × 10-5), reduced total drinks consumed per drinking day (ßIVW = -0.207, 95% CI, -0.293 to -0.120, PIVW = 2.87 × 10-6), as well as lower weekly distilled spirits intake (ßIVW = -0.148, 95% CI, -0.188 to -0.107, PIVW = 6.24 × 10-13). Conversely, genetic instruments for increased EA were associated with increased alcohol intake frequency (ßIVW = 0.331, 95% CI, 0.267-0.396, PIVW = 4.62 × 10-24), and increased weekly white wine (ßIVW = 0.199, 95% CI, 0.159-0.238, PIVW = 7.96 × 10-23) and red wine intake (ßIVW = 0.204, 95% CI, 0.161-0.248, PIVW = 6.67 × 10-20). Genetic instruments associated with increased EA reduced AD risk: an additional 3.61 years schooling reduced the risk by ~50% (ORIVW = 0.508, 95% CI, 0.315-0.819, PIVW = 5.52 × 10-3). Consistency of results across complementary MR methods accommodating different assumptions about genetic pleiotropy strengthened causal inference. Our findings suggest EA may have important effects on alcohol consumption patterns and may provide potential mechanisms explaining reported associations between EA and adverse health outcomes.


Assuntos
Alcoolismo , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Escolaridade , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
16.
Mol Psychiatry ; 26(6): 2224-2237, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32398718

RESUMO

Alcohol use disorder (AUD) is a chronic debilitating disorder with limited treatment options and poorly defined pathophysiology. There are substantial genetic and epigenetic components; however, the underlying mechanisms contributing to AUD remain largely unknown. We conducted the largest DNA methylation epigenome-wide association study (EWAS) analyses currently available for AUD (total N = 625) and employed a top hit replication (N = 4798) using a cross-tissue/cross-phenotypic approach with the goal of identifying novel epigenetic targets relevant to AUD. Results show that a network of differentially methylated regions in glucocorticoid signaling and inflammation-related genes were associated with alcohol use behaviors. A top probe consistently associated across all cohorts was located in the long non-coding RNA growth arrest specific five gene (GAS5) (p < 10-24). GAS5 has been implicated in regulating transcriptional activity of the glucocorticoid receptor and has multiple functions related to apoptosis, immune function and various cancers. Endophenotypic analyses using peripheral cortisol levels and neuroimaging paradigms showed that methylomic variation in GAS5 network-related probes were associated with stress phenotypes. Postmortem brain analyses documented increased GAS5 expression in the amygdala of individuals with AUD. Our data suggest that alcohol use is associated with differential methylation in the glucocorticoid system that might influence stress and inflammatory reactivity and subsequently risk for AUD.


Assuntos
Alcoolismo , Glucocorticoides , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma , Estudo de Associação Genômica Ampla , Humanos , Transdução de Sinais/genética
17.
JAMA Psychiatry ; 78(2): 151-160, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175090

RESUMO

Importance: Growing evidence suggests that prescription opioid use affects depression and anxiety disorders; however, observational studies are subject to confounding, making causal inference and determining the direction of these associations difficult. Objective: To investigate the potential bidirectional associations between the genetic liability for prescription opioid and other nonopioid pain medications and both major depressive disorder (MDD) and anxiety and stress-related disorders (ASRD) using genetically based methods. Design, Setting, and Participants: We performed 2-sample mendelian randomization (MR) using summary statistics from genome-wide association studies (GWAS) to assess potential associations of self-reported prescription opioid and nonopioid analgesics, including nonsteroidal anti-inflammatories (NSAIDs) and acetaminophen-like derivatives use with MDD and ASRD. The GWAS data were derived from participants of predominantly European ancestry included in observational cohorts. Data were analyzed February 20, 2020, to May 4, 2020. Main Outcomes and Measures: Major depressive disorder, ASRD, and self-reported pain medications (opioids, NSAIDs, anilides, and salicylic acid). Results: The GWAS data were derived from participants of predominantly European ancestry included in the population-based UK Biobank and Lundbeck Foundation Initiative for Integrative Psychiatric Research studies: approximately 54% of the initial UK Biobank sample and 55.6% of the Lundbeck Foundation Initiative for Integrative Psychiatric Research sample selected for the ASRD GWAS were women. In a combined sample size of 737 473 study participants, single-variable MR showed that genetic liability for increased prescription opioid use was associated with increased risk of both MDD (odds ratio [OR] per unit increase in log odds opioid use, 1.14; 95% CI, 1.06-1.22; P < .001) and ASRD (OR, 1.24; 95% CI, 1.07-1.44; P = .004). Using multivariable MR, these opioid use estimates remained after accounting for other nonopioid pain medications (MDD OR, 1.14; 95% CI, 1.04-1.25; P = .005; ASRD OR, 1.30; 95% CI, 1.08-1.46; P = .006), and in separate models, accounting for comorbid pain conditions. Bidirectional analyses showed that genetic liability for MDD but not ASRD was associated with increased prescription opioid use risk (OR, 1.18; 95% CI, 1.08-1.30; P < .001). These estimates were generally consistent across single-variable and multivariable inverse variance-weighted (MV-IVW) and MR-Egger sensitivity analyses. Pleiotropy-robust methods did not indicate bias in any MV-IVW estimates. Conclusions and Relevance: The findings of this mendelian randomization analysis suggest evidence for potential causal associations between the genetic liability for increased prescription opioid use and the risk for MDD and ASRD. While replication studies are necessary, these findings may inform prevention and intervention strategies directed toward the opioid epidemic and depression.


Assuntos
Ansiedade/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Estresse Psicológico/complicações , Ansiedade/epidemiologia , Ansiedade/psicologia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/psicologia , Humanos , Análise da Randomização Mendeliana , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Transtornos Relacionados ao Uso de Opioides/psicologia , Polimorfismo de Nucleotídeo Único/genética , Autorrelato , Estresse Psicológico/psicologia , População Branca/etnologia , População Branca/genética , População Branca/psicologia
18.
PLoS Med ; 17(12): e1003410, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33275596

RESUMO

BACKGROUND: Alcohol consumption and smoking, 2 major risk factors for cardiovascular disease (CVD), often occur together. The objective of this study is to use a wide range of CVD risk factors and outcomes to evaluate potential total and direct causal roles of alcohol and tobacco use on CVD risk factors and events. METHODS AND FINDINGS: Using large publicly available genome-wide association studies (GWASs) (results from more than 1.2 million combined study participants) of predominantly European ancestry, we conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to simultaneously assess the independent impact of alcohol consumption and smoking on a wide range of CVD risk factors and outcomes. Multiple sensitivity analyses, including complementary Mendelian randomization (MR) methods, and secondary alcohol consumption and smoking datasets were used. SVMR showed genetic predisposition for alcohol consumption to be associated with CVD risk factors, including high-density lipoprotein cholesterol (HDL-C) (beta 0.40, 95% confidence interval (CI), 0.04-0.47, P value = 1.72 × 10-28), triglycerides (TRG) (beta -0.23, 95% CI, -0.30, -0.15, P value = 4.69 × 10-10), automated systolic blood pressure (BP) measurement (beta 0.11, 95% CI, 0.03-0.18, P value = 4.72 × 10-3), and automated diastolic BP measurement (beta 0.09, 95% CI, 0.03-0.16, P value = 5.24 × 10-3). Conversely, genetically predicted smoking was associated with increased TRG (beta 0.097, 95% CI, 0.014-0.027, P value = 6.59 × 10-12). Alcohol consumption was also associated with increased myocardial infarction (MI) and coronary heart disease (CHD) risks (MI odds ratio (OR) = 1.24, 95% CI, 1.03-1.50, P value = 0.02; CHD OR = 1.21, 95% CI, 1.01-1.45, P value = 0.04); however, its impact was attenuated in MVMR adjusting for smoking. Conversely, alcohol maintained an association with coronary atherosclerosis (OR 1.02, 95% CI, 1.01-1.03, P value = 5.56 × 10-4). In comparison, after adjusting for alcohol consumption, smoking retained its association with several CVD outcomes including MI (OR = 1.84, 95% CI, 1.43, 2.37, P value = 2.0 × 10-6), CHD (OR = 1.64, 95% CI, 1.28-2.09, P value = 8.07 × 10-5), heart failure (HF) (OR = 1.61, 95% CI, 1.32-1.95, P value = 1.9 × 10-6), and large artery atherosclerosis (OR = 2.4, 95% CI, 1.41-4.07, P value = 0.003). Notably, using the FinnGen cohort data, we were able to replicate the association between smoking and several CVD outcomes including MI (OR = 1.77, 95% CI, 1.10-2.84, P value = 0.02), HF (OR = 1.67, 95% CI, 1.14-2.46, P value = 0.008), and peripheral artery disease (PAD) (OR = 2.35, 95% CI, 1.38-4.01, P value = 0.002). The main limitations of this study include possible bias from unmeasured confounders, inability of summary-level MR to investigate a potentially nonlinear relationship between alcohol consumption and CVD risk, and the generalizability of the UK Biobank (UKB) to other populations. CONCLUSIONS: Evaluating the widest range of CVD risk factors and outcomes of any alcohol consumption or smoking MR study to date, we failed to find a cardioprotective impact of genetically predicted alcohol consumption on CVD outcomes. However, alcohol was associated with and increased HDL-C, decreased TRG, and increased BP, which may indicate pathways through impact CVD risk, warranting further study. We found smoking to be a risk factor for many CVDs even after adjusting for alcohol. While future studies incorporating alcohol consumption patterns are necessary, our data suggest causal inference between alcohol, smoking, and CVD risk, further supporting that lifestyle modifications might be able to reduce overall CVD risk.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Polimorfismo de Nucleotídeo Único , Uso de Tabaco/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco de Doenças Cardíacas , Humanos , Análise da Randomização Mendeliana , Análise Multivariada , Medição de Risco , Uso de Tabaco/epidemiologia , Uso de Tabaco/genética
19.
Transl Psychiatry ; 10(1): 388, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168806

RESUMO

Rates of suicidal behavior are increasing in the United States and identifying causal risk factors continues to be a public health priority. Observational literature has shown that educational attainment (EA) and cognitive performance (CP) influence suicide attempt risk; however, the causal nature of these relationships is unknown. Using summary statistics from genome-wide association studies (GWAS) of EA, CP, and suicide attempt risk with > 815,000 combined white participants of European ancestry, we performed multivariable Mendelian randomization (MR) to disentangle the effects of EA and CP on attempted suicide. In single-variable MR (SVMR), EA and CP appeared to reduce suicide attempt risk (EA odds ratio (OR) per standard deviation (SD) increase in EA (4.2 years), 0.524, 95% CI, 0.412-0.666, P = 1.07 × 10-7; CP OR per SD increase in standardized score, 0.714, 95% CI, 0.577-0.885, P = 0.002). Conversely, bidirectional analyses found no effect of a suicide attempt on EA or CP. Using various multivariable MR (MVMR) models, EA seems to be the predominant risk factor for suicide attempt risk with the independent effect (OR, 0.342, 95% CI, 0.206-0.568, P = 1.61 × 10-4), while CP had no effect (OR, 1.182, 95% CI, 0.842-1.659, P = 0.333). In additional MVMR analyses accounting simultaneously for potential behavioral and psychiatric mediators (tobacco smoking; alcohol consumption; and self-reported nerves, tension, anxiety, or depression), the effect of EA was little changed (OR, 0.541, 95% CI, 0.421-0.696, P = 3.33 × 10-6). Consistency of results across complementary MR methods accommodating different assumptions about genetic pleiotropy strengthened causal inference. Our results show that even after accounting for psychiatric disorders and behavioral mediators, EA, but not CP, may causally influence suicide attempt risk among white individuals of European ancestry, which could have important implications for health policy and programs aimed at reducing the increasing rates of suicide. Future work is necessary to examine the EA-suicide relationship populations of different ethnicities.


Assuntos
Transtornos Mentais , Tentativa de Suicídio , Cognição , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Transtornos Mentais/genética
20.
Alcohol ; 86: 93-101, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32335269

RESUMO

Alcohol withdrawal syndrome (AWS) is a serious medical condition of high variability in alcohol use disorder (AUD) after drinking cessation. Identification of clinical biomarkers capable of detecting severe AWS is needed. While alcohol consumption and withdrawal are linked with lipid profile dysregulation, the relationship between lipid levels (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], and triglycerides) and AWS is unknown. Therefore, this study investigated whether HDL-C, LDL-C, and triglycerides conferred risk for moderate-to-severe AWS symptoms in treatment-seeking individuals (n = 732) admitted to the National Institute on Alcohol Abuse and Alcoholism (NIAAA) alcohol treatment program. Lipid levels were measured upon admission, and the Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar) assessed AWS severity for generating a three-level AWS typology (none-to-mild, moderate, and severe). Multivariable multinomial logistic regression examined whether lipid levels were associated with risk for moderate-to-severe AWS. We found significant predictive relationships between AWS and HDL-C, LDL-C, and triglycerides. While extremely high HDL-C (≥100 mg/dL) conferred the highest odds for moderate (4.405, 95% CI, 2.572-7.546, p < 0.001) and severe AWS (5.494, 95% CI, 3.541-8.523, p < 0.001), the lowest odds ratios for moderate AWS (0.493, 95% CI, 0.248-0.981, p = 0.044) and severe AWS (0.303, 95% CI, 0.223-0.411, p < 0.001) were associated with high LDL-C (≥160 mg/dL). The present study demonstrates that altered lipid levels, measured upon admission for inpatient AUD treatment, may help to predict which individuals are at risk for medically relevant moderate-to-severe AWS. This suggests that further research into the role of lipid biomarkers in AWS may be beneficial for identifying biologically determined risk profiles in AUD.


Assuntos
Alcoolismo/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Síndrome de Abstinência a Substâncias/sangue , Triglicerídeos/sangue , Adulto , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Abstinência a Substâncias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA